

Corporate Office Level 7 56 Pitt Street Sydney NSW 2000 AUSTRALIA Telephone: Facsimile: Website: ACN: +61 2 8259 7100 +61 2 8259 7199 www.lynascorp.com 009 066 648

# QUARTERLY REPORT

# FOR THE PERIOD ENDING 31 MARCH 2009

# **HIGHLIGHTS**

- Rare Earths project suspension due to uncertainty concerning the financing structure following a dispute with the bondholders
- Effective project suspension nearing completion with good support from customers, equipment vendors, construction contractors and suppliers confirmed
- Engineering works have progressed this quarter with most disciplines nearing "Approved for Construction" status
- The planned drilling operations on the Mount Weld Southern Zone, located immediately south of the current mine pit, have been completed on plan and on budget
- The average grade of the assays received for the Southern Zone was 4.5% REO with 17.7% of the REO distribution as Heavy Rare Earths plus Yttrium





#### CORPORATE

During the first quarter of 2009 the company announced the Lynas Rare Earths project consisting of the Concentration Plant in Western Australia and the Advanced Materials Plant in Malaysia were to be suspended. This decision was made due to uncertainty concerning the financing structure following a dispute with the bondholders as to whether all conditions precedent had been satisfied to release the US\$95 million to Lynas.

As a result of the ongoing dispute concerning the convertible bond facility the Company cancelled its senior loan facility when it became clear that Lynas would not be able to satisfy the condition of full project funding by 31 March 2009.

It was decided it was in the best interest of the company to settle all claims concerning the convertible bonds, rather than becoming involved in lengthy and costly litigation. Importantly, settlement has also led to a release of the securities held over the project assets of the Lynas group, enabling Lynas to move forward with discussions concerning potential replacement financing. Therefore Lynas has now settled all claims with the bondholders concerning the US\$95 million convertible bond facility. Lynas has received approximately US\$5 million from the funds held in the escrow account, with the bond holder receiving US\$91 million against a total potential claim of US\$101.5 million due to accrued interest and costs.

The suspension implementation is proceeding well. Procurement and construction activities have been halted at the logical point of suspension to allow a rapid restart of the project as soon as a satisfactory funding base is secured – in some cases this has involved additional work to achieve suspension and in other cases, suspension occurred immediately. All vendors and contractors have been contacted and the vast majority are showing significant support for Lynas' position and terms are being negotiated to minimise cash outlay pending a restart.

The total cash at bank of Lynas as at 31 March 2009 was A\$40.9 million. The initial estimate to suspend the project, as announced on 17 February 2009 was approximately A\$45 million out of a cash balance at the time of A\$55 million. Negotiations are substantially complete and some costs have been paid to-date. The estimate of remaining suspension expenditure over the next few months is A\$31 million. This would leave approximately A\$9.9 million to meet normal ongoing operating costs.

Lynas continues to believe that the project is sound, even in the current environment both Rare Earths demand and prices remain robust and the project economics remain solid. With appropriate funding structures in place the Company will have an exciting future.

The Company is in active dialogue concerning various additional short-term funding arrangements as well as longer term project financing. The Company will update the market further as such arrangements are finalised.

Whilst significant rationalisation of ongoing expenses has occurred the Company takes the view that it must retain core skills to enable a restart in as rapid and efficient a manner as possible.





#### **ENGINEERING AND CONSTRUCTION UPDATE**

#### CONCENTRATION PLANT AT MOUNT WELD

#### ENGINEERING AND PROCUREMENT

Following the suspension of works, a revised scope of engineering was agreed with Abesque Engineering and Construction (Principal Contractor) to ensure a logical point of suspension was achieved. This revised scope of works resulted in engineering activities continuing through to mid-April at which point the majority of civil, structural and mechanical engineering works have been completed and issued as "Approved for Construction". Piping, electrical and instrumentation engineering have also progressed through this period with works suspended at a point which ensures that completion of detailed engineering works is able to be achieved at a minimal cost upon reactivation.

Similarly, the procurement activities have been reviewed in detail and discussions with all major equipment vendors regarding project suspension status have been completed. Where equipment manufacture has been close to completion, this work has been continued with several procurement packages now completed and delivered or held at the vendors works. Where vendor packages are not complete, they have been suspended at a logical point to ensure minimal rework and maximum integrity and protection of work completed to-date. All vendors have been remunerated for work completed to-date in accordance with commercial obligations and in accordance with Lynas' intention to recommence and complete the remaining packages once finance is restored. There has been no package cancellations or penalties associated with the suspension.

# **C**ONSTRUCTION

Site construction activities continued until the suspension in early February and Abesque, Mintrex (Lynas Superintendent) and Downer EDI (bulk earth works contractor) demobilised from site. Similarly, construction activities were suspended at a logical point to ensure the integrity of all foundation work and civil works and to minimise any rework costs for the recommencement of construction.

As at suspension, Downer EDI had completed bulk earthworks for the processing facilities including the plant run-off pond and treated water pond. Due to the suspension of work, construction of the tailings storage facility and evaporation pond has been deferred until the project is reactivated.

Abesque continued construction works on site with the following works completed prior to suspension:

- ROM Bin/Mill Feed Conveyor: Civil and concrete works have been completed
- Grinding Circuit: Civil and concrete works have been completed.
- Flotation Building: Civil and concrete works have continued in this area and have now been put on hold due to the project suspension with works carried out to ensure that the area is safe to leave after demobilisation. Drainage works have also been installed to ensure works stay safe after demobilisation.
- Concentrate Thickening: Steel reinforcement has been delivered to site for storage





 Off-site fabrication works have also commenced during this quarter with the first batch of fabricated tanks and conveyor trestles and trusses completed and ready for delivery to Lynas' storage facility.

# ADVANCED MATERIALS PLANT IN MALAYSIA

#### ENGINEERING AND PROCUREMENT

Engineering works have progressed this quarter. With most disciplines nearing "Approved for Construction" status; process engineering is 98% complete, mechanical engineering is 90% complete, piping engineering is 90% complete, electrical engineering is 82% complete and instrumentation engineering is 90% complete. Civil, structural and architectural engineering is 60% complete however the critical path engineering work for process building foundations and process building design have been completed and awarded. Following the suspension of works, all efforts have been made to clearly identify any outstanding issues in all disciplines with the aim that all engineering and design works are able to be completed once short-term funding is secured

Lynas has suspended the manufacture of approximately 60 equipment packages where manufacture is not yet complete. The efficient suspension of these contracts has been given a priority and meetings have occurred with all vendors and logical suspension points have been identified and payment terms agreed for all work completed to-date. This ensures that all equipment packages are in a position for completion upon refinancing and there are minimal rework and suspension costs. This suspension works is nearing completion.

#### **C**ONSTRUCTION

Prior to the project suspension, the Gebeng site construction activities continued with significant progress made. Piling continued through the quarter with all processing facilities now piled and the total piling package is 90% complete. Hexagon Tower was appointed as the concrete supply and installation contractor for the project and the foundations for the main electrical substation and the site administration building have been completed. Bluescope steel delivered the first preengineered buildings to site with installation of the site administration building nearing completion. All major roads are in place and compacted and site storm water drainage system completed.

Construction activities and contractor mobilisation continued until the suspension in February and the various contractors demobilised and the site now remains under Lynas safety supervision.

# **OPERATIONAL UPDATE**

## **MOUNT WELD OPERATIONS**

The Western Australian operational team has been reduced in size to reflect the lower site supervision and start-up demands during the suspension period. This has reduced the operational cost structure significantly for this period.





#### **EXPLORATION DRILLING**

The planned drilling operations on the Mount Weld Southern Zone, located immediately south of the current mine pit, have been completed on plan and on budget. The Southern Zone is known to contain Rare Earth resources with a higher distribution of the heavier and higher value Rare Earths such as yttrium, europium, terbium and dysprosium and complement the Central Lanthanide Zone resources which are rich in the lighter Rare Earths such as lanthanum, cerium, praseodymium and neodymium.

The drilling programme aims to provide data for resource estimation, metallurgical test-work and further mine planning. At the end of March 2009, 169 holes had been completed at a total of 8,907 metres. Approximately 60% of the samples have been assayed and the balance will be assayed following project refinancing.

The results of the assays to date for the Southern Zone are appended to this report (Appendix A). Notable results include hole RC1083 with 32 meters at 8.83% Rare Earth Oxide (REO), hole RC1085 with 10 meters at 5.27% REO where over 25% of the REO distribution is Heavy Rare Earths plus Yttrium; and RC1093 with 30 meters at 5.39% REO with 24% of the REO distribution as Heavy Rare Earths plus Yttrium (compared to the current Central Lanthanide Zone mine which has approximately 4.6% of the REO distribution as Heavy Rare Earths plus Yttrium). The average grade of the assays received for the Southern Zone was 4.5% REO with 17.7% of the REO distribution as Heavy Rare Earths plus Yttrium.

In addition to the Southern Zone, another zone to the north of the current pit and partially within the current mine plan, has been identified at Mount Weld which also contains resources with a higher distribution of the heavier and higher value Rare Earths. This zone has been called the Northern Zone. Additional exploration drilling has been carried out in this zone during the recent campaign. The results of the assays to date for the Northern Zone are appended to this report (Appendix B). The average grade of the assays received for the Northern Zone was 5.1% REO with 12.7% of the REO distribution as Heavy Rare Earths plus Yttrium.

# MALAYSIA OPERATIONS

During the suspension period, recruitment activities have been frozen and several contract positions have been released to minimise the operational costs throughout this suspension period. All permanent Malaysian staff have been retained and are continuing to prepare for operational readiness.

Community engagements continued during the quarter to further build relationships and to communicate the reasons for the suspension. Lynas emphasised that the project construction and operational build-up for plant commissioning shall restart as soon as financing is re-established.

#### SUPPLY CHAIN UPDATE

With the project in suspension mode during the majority of the past quarter the focus of supply chain activities moved to ensure a rapid restart of the project once funding has been confirmed.

Contractual obligations have been examined on a case-by-case basis and all vendors and contractors have been contacted. There is strong support for Lynas' position and terms have been negotiated to minimise cash outlay pending a restart. Lynas has worked with key suppliers to





suspend vendor activity in a way that supports supply inputs while minimising any financial impact on both vendors and Lynas during the suspension period. Sound business relationships with key supply partners remain intact.

Activity has continued in the areas of permitting and approvals associated with supply chain during the past quarter with the 'Application for Controlled Ores Export' submitted for the Mount Weld Rare Earths concentrate to the Australian Government-Department of Resources Energy and Tourism and submission of the 'Transport Management Plan' to the Western Australia Environmental Protection Agency.

The price of supply for many of the chemical inputs has remained stable over the last quarter. This has resulted in Lynas confirming the forecast operational cost of US $$5.65 \pm 10\%$  / kg final product, which covers the cash operational costs from mine to final product.

# **GLOBAL MARKET ACTIVITY**

#### COMMERCIAL DISCUSSIONS

Following the announcement of the project suspension Lynas has had meetings with prospective customers including those who have signed customer agreements with the company. There is broad market support for Lynas and as a result of these meetings Lynas does not expect a material impact on the supply contracts signed to-date. Two of the four contracts have delivery dates which require revision and the customers have expressed a desire to revise these terms once a new project schedule and anticipated delivery date is known.

### RARE EARTHS PRICES

The average Mount Weld Rare Earths price for 2008 was US\$13.62/kg REO; however by Q1 2009 the average quarterly price had dropped to US\$9.91. From customer discussions it is apparent that with the global economic slow-down, many industries have been suffering from inventory destocking issues. This is also true within the Rare Earths industry where the Japanese, European and USA consumers of Rare Earths try and manage their China supply risk through inventory stock piles. Customers reported that few significant purchases of Rare Earths have been made since November 2008. This was corroborated by a Japan Metal Bulletin article on 10 April which reported Japanese Rare Earths imports for February 2009 decreased to just 15% of February 2008 imports.

However, customers are anticipating inventories will be significantly absorbed throughout the supply chain by the end of 2009, after which normal purchasing will resume. This, in turn should bring price rises back towards 2008 levels. The rationale for this price move is that at current prices the Chinese producers are operating at are cash costs of production, which explains why prices for Rare Earths have not decreased to the extent of other commodity metals such as nickel.





| Rare Earths Prices FOB China (US\$/kg)                       |                     |                            |         |         |  |  |  |
|--------------------------------------------------------------|---------------------|----------------------------|---------|---------|--|--|--|
| Rare Earths Oxide                                            | Mt Weld Composition | Average Price Over Quarter |         |         |  |  |  |
| Purity 99% min                                               | % Rare Earth Oxide* | Q1 2008                    | Q4 2008 | Q1 2009 |  |  |  |
| Lanthanum Oxide                                              | 25.50%              | 6.02                       | 8.45    | 7.28    |  |  |  |
| Cerium Oxide                                                 | 46.74%              | 4.04                       | 4.60    | 4.58    |  |  |  |
| Neodymium Oxide                                              | 18.50%              | 31.69                      | 18.18   | 14.50   |  |  |  |
| Praseodymium Oxide                                           | 5.32%               | 29.29                      | 18.02   | 14.50   |  |  |  |
| Samarium Oxide                                               | 2.27%               | 4.86                       | 4.80    | 4.75    |  |  |  |
| Dysprosium Oxide                                             | 0.12%               | 110.00                     | 112.20  | 96.46   |  |  |  |
| Europium Oxide                                               | 0.44%               | 441.70                     | 500.80  | 448.85  |  |  |  |
| Terbium Oxide                                                | 0.07%               | 710.40                     | 515.40  | 370.77  |  |  |  |
| Av. Mt Weld Composition                                      |                     | 13.68                      | 11.45   | 9.91    |  |  |  |
| * in final product form, other Rare Earths account for 1.04% |                     |                            |         |         |  |  |  |

The table above shows the average quarterly price for a 'standard' 99% purity of individual elements and for the generic composite of Rare Earths equivalent to the Rare Earths distribution for the Central Zone resource of the CLD Sector at Mount Weld, on a Freight On Board (FOB) China basis. Weekly updates of these prices can be found on the Lynas website, <a href="https://www.lynascorp.com">www.lynascorp.com</a>, under "What Are Rare Earths?", then "What are their prices?".

# **FINANCE**

The company opened the quarter with \$70.5 million of available cash and closed the quarter with a balance of \$40.9 million. The decrease in cash of \$29.6 million was as follows:

| CASHFLOW                                                                                      |                    |      |      | AUD M |
|-----------------------------------------------------------------------------------------------|--------------------|------|------|-------|
| OPENING CASH BALANCE 31 DECEMBER 2008                                                         |                    |      |      | 70.5  |
| Interest and other income received Receipts from settlement with bondholders                  | 0.6<br>7.4         |      |      |       |
| TOTAL INCOME                                                                                  |                    |      | 8.0  |       |
| Less                                                                                          |                    |      |      |       |
| Western Australia Concentration Plant<br>Malaysian Advanced Materials Plant<br>Start Up Costs | 8.3<br>18.2<br>3.6 |      |      |       |
| TOTAL CAPITAL EXPENDITURE                                                                     |                    | 30.1 |      |       |
| Ongoing Operational and Financing Costs                                                       |                    | 7.5  |      |       |
| TOTAL OUTFLOW                                                                                 |                    |      | 37.6 |       |
| Movement in cash                                                                              |                    |      |      | 29.6  |
| CLOSING CASH BALANCE 31 MARCH 2009                                                            |                    |      |      | 40.9  |





The total capital expenditure associated with the Rare Earths project from 1 July 2007 to 31 March 2009 is \$159.3 million. The allocation is shown below:

| PROJECT CAPITAL EXPENDITURE           | AUD M |
|---------------------------------------|-------|
| Western Australia Concentration Plant | 19.7  |
| Western Australia Mining              | 19.5  |
| Malaysian Advanced Materials Plant    | 80.3  |
| Malaysian Land                        | 28.1  |
| Start Up Costs                        | 11.7  |
| TOTAL CAPITAL EXPENDITURE             | 159.3 |

# NOTE

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Brendan Shand, who is a member of The Australasian Institute of Mining and Metallurgy.

Brendan Shand is an employee of Lynas Corporation Limited.

Brendan Shand has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Brendan Shand consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.





# Appendix A

|                  |          | South    | nern Heavy     | / Rare E     | arths Z      | one  |              |              |
|------------------|----------|----------|----------------|--------------|--------------|------|--------------|--------------|
| Hole_ld          | From     | То       | Length         | TLnO         | LLnO         | HLnO | Y 2 O 3      | Nb2O5        |
| RC1072           | 22       | 28       | 6              | 8.02         | 7.57         | 0.45 | 0.16         | 0.32         |
| RC1073           | 22       | 24       | 2              | 2.74         | 2.51         |      | 0.09         | 0.27         |
| RC1074           | 19       | 34       | 15             | 3.94         | 3.65         |      | 0.13         | 0.30         |
| RC1075           | 20       | 26       | 6              | 6.49         | 6.19         |      | 0.13         | 0.30         |
| RC1076<br>RC1077 | 24<br>24 | 32<br>38 | <u>8</u><br>14 | 3.19<br>4.05 | 2.78<br>3.54 |      | 0.32         | 0.48<br>0.57 |
| RC1077           | 24       | 36       | 12             | 7.83         | 7.42         |      | 0.30         | 0.37         |
| RC1083           | 24       | 56       | 32             | 8.83         | 8.27         |      | 0.23         | 0.12         |
| RC1084           | 24       | 34       | 10             | 3.78         | 3.25         |      | 0.53         | 0.58         |
| RC1085           | 28       | 38       | 10             | 5.27         | 4.48         |      | 0.76         | 0.61         |
| RC1085           | 48       | 51       | 3              | 2.80         | 1.85         |      | 1.68         | 0.14         |
| RC1086           | 26       | 40       | 14             | 3.61         | 3.01         |      | 0.59         | 0.37         |
| RC1087           | 30<br>24 | 38       | 8              | 3.01         | 2.63         |      | 0.29         | 0.45         |
| RC1090<br>RC1091 | 24       | 26<br>32 | 2<br>8         | 2.94<br>3.91 | 2.75<br>3.60 |      | 0.07<br>0.17 | 0.24         |
| RC1091           | 22       | 52       | 30             | 5.39         | 4.62         |      | 0.68         | 0.31         |
| RC1094           | 30       | 32       | 2              | 3.87         | 3.32         |      | 0.55         | 0.30         |
| RC1095           | 30       | 38       | 8              | 3.86         | 3.51         |      | 0.31         | 0.51         |
| RC1096           | 26       | 28       | 2              | 4.57         | 3.71         | 0.87 | 1.08         | 0.26         |
| RC1097           | 26       | 38       | 12             | 3.90         | 2.94         |      | 1.19         | 0.65         |
| RC1098           | 24       | 30       | 6              | 2.59         | 2.15         |      | 0.54         | 0.34         |
| RC1101<br>RC1102 | 22<br>24 | 38<br>40 | 16<br>16       | 3.70<br>3.06 | 3.32<br>2.83 |      | 0.22<br>0.10 | 0.54<br>0.54 |
| RC1102           | 26       | 30       | 4              | 2.67         | 2.83         |      | 0.10         | 0.39         |
| RC1103           | 21       | 30       | 11             | 7.71         | 7.31         |      | 0.52         | 0.39         |
| RC1100           | 24       | 50       | 26             | 7.82         | 7.47         |      | 0.10         | 0.31         |
| RC1110           | 20       | 46       | 26             | 4.14         |              |      | 0.32         | 0.43         |
| RC1111           | 24       | 40       | 16             | 3.53         | 3.16         | 0.37 | 0.23         | 0.42         |
| RC1112           | 20       | 44       | 24             | 3.37         | 3.06         |      | 0.16         | 0.48         |
| RC1113           | 22       | 44       | 22             | 3.32         | 3.03         |      | 0.11         | 0.50         |
| RC1114<br>RC1115 | 28<br>25 | 32<br>38 | 13             | 3.30<br>4.31 | 2.92<br>3.94 |      | 0.32         | 0.58<br>0.23 |
| RC1116           | 24       | 30       | 6              | 2.80         | 2.46         |      | 0.26         | 0.23         |
| RC1117           | 24       | 36       | 12             | 3.03         | 2.39         |      | 0.85         | 0.50         |
| RC1118           | 24       | 28       | 4              | 2.61         | 2.12         |      | 0.55         | 0.64         |
| RC1119           | 28       | 32       | 4              | 3.64         | 3.20         |      | 0.39         | 0.84         |
| RC1120           | 28       | 39       | 11             | 2.82         | 2.50         |      | 0.22         | 0.26         |
| RC1121           | 22       | 44       | 22             | 3.79         |              |      | 0.30         |              |
| RC1122<br>RC1123 | 20<br>22 | 44<br>54 | 24<br>32       | 3.99<br>3.53 | 3.60<br>3.16 |      | 0.25<br>0.22 | 0.47<br>0.46 |
| RC1123           | 24       | 44       | 20             | 3.77         | 3.41         |      | 0.22         | 0.40         |
| RC1125           | 30       | 48       | 18             | 3.92         | 3.47         |      | 0.42         | 0.51         |
| RC1126           | 26       | 48       | 22             | 3.31         | 2.87         |      | 0.42         | 0.45         |
| RC1127           | 32       | 38       | 6              | 4.28         | 3.47         | 0.80 | 0.78         | 0.51         |
| RC1128           | 30       | 34       | 4              | 3.77         | 3.05         |      | 0.90         | 0.29         |
| RC1129           | 28       | 34       | 6              | 3.38         | 2.87         |      | 0.60         | 0.49         |
| RC1130           | 24<br>20 | 28<br>57 | 4              | 3.40         | 3.04<br>4.00 |      | 0.19         | 0.70         |
| RC1131<br>RC1132 | 28       | 49       | 37<br>21       | 4.28<br>4.43 | 4.00         |      | 0.14         | 0.36<br>0.56 |
| RC1133           | 26       | 48       | 22             | 4.49         | 4.02         |      | 0.23         | 0.51         |
| RC1134           | 24       | 52       | 28             | 3.45         | 3.10         |      | 0.24         | 0.50         |
| RC1135           | 24       | 46       | 22             | 3.98         | 3.54         | 0.43 | 0.28         | 0.38         |
| RC1136           | 40       | 58       | 18             | 3.82         |              |      | 0.52         | 0.75         |
| RC1137           | 28       | 40       | 12             | 3.89         |              |      | 0.27         | 0.43         |
| RC1138<br>RC1140 | 26<br>28 | 28<br>34 |                | 2.59<br>5.50 |              |      | 0.08         |              |
| RC1140<br>RC1141 | 24       | 34       | 10             | 3.72         |              |      | 0.78         | 0.15<br>0.46 |
| RC1141           | 26       | 58       | 32             | 4.00         |              |      | 0.41         | 0.43         |
| RC1143           | 22       | 52       | 30             | 3.17         |              |      | 0.14         | 0.44         |
| RC1144           | 42       | 53       | 11             | 4.27         | 3.90         |      | 0.20         |              |
| RC1145           | 32       | 54       | 22             | 4.30         |              |      | 0.30         |              |
| RC1146           | 38       | 44       | 6              | 3.79         |              |      | 1.39         | 0.79         |
| RC1147           | 30       | 38       | 8              | 3.70         |              |      | 0.15         | 0.45         |
| RC1148           | 36<br>32 | 40<br>34 | 4              | 2.75         |              |      | 0.13         |              |
| RC1149<br>RC1150 | 28       | 42       | 14             | 2.81<br>3.87 | 2.10<br>3.39 |      | 0.83         | 0.43         |
| RC1151           | 30       | 42       | 14             | 2.63         | 2.31         |      | 0.44         | 0.59         |
| RC1151           | 50       | 57       | 7              | 3.47         | 3.02         | +    | 0.44         | 0.69         |
| RC1152           | 36       | 50       | 14             | 2.90         |              |      | 0.41         | 0.66         |
| RC1153           | 34       | 40       | 6              | 3.18         |              |      | 0.20         | 0.49         |
| RC1155           | 32       | 36       | 4              | 3.01         | 2.73         |      | 0.22         | 0.33         |
| RC1156           | 42       | 44       | 2              | 3.99         | 3.36         | 0.62 | 0.69         | 0.62         |





# Appendix B

| Northern Heavy Rare Earths Zone |          |          |          |              |              |              |              |              |
|---------------------------------|----------|----------|----------|--------------|--------------|--------------|--------------|--------------|
| Hole_ld                         | From     | То       | Length   | TLnO         | LLnO         | HLnO         | Y2O3         | Nb2O5        |
| RC1006                          | 51       | 53       | 2        | 3.16         | 2.97         | 0.18         | 0.08         | 0.47         |
| RC1007                          | 50       | 70       | 20       | 4.86         | 4.54         | 0.33         | 0.14         | 0.84         |
| RC1008                          | 46       | 74.5     | 28.5     | 3.44         | 3.19         | 0.25         | 0.15         | 0.61         |
| RC1009                          | 36       | 46       | 10       | 3.37         | 3.11         | 0.26         | 0.13         | 0.48         |
| RC1009                          | 60       | 64       | 4        | 2.73         | 2.56         | 0.17         | 0.08         |              |
| RC1010                          | 42       | 66       | 24       | 2.60         | 2.37         | 0.24         | 0.26         |              |
| RC1012                          | 56       | 66       | 10       | 11.66        | 10.65        | 1.01         | 0.48         |              |
| RC1013                          | 51       | 53       | 2        | 3.43         | 3.20         | 0.23         | 0.10         | 0.60         |
| RC1014                          | 45       | 59       | 14       | 5.09         | 4.83         | 0.27         | 0.08         |              |
| RC1015                          | 37       | 66       | 29       | 5.14         | 4.86         | 0.28         |              |              |
| RC1016                          | 32       | 50       | 18       | 3.44         | 3.12         | 0.32         |              | 0.52         |
| RC1017                          | 32       | 70       | 38       | 3.16         | 2.85         | 0.31         | 0.29         | 0.39         |
| RC1018                          | 44       | 72       | 28       | 2.66         | 2.43         | 0.23         |              |              |
| RC1018                          | 82       | 88       | 6        | 2.89         | 2.76         | 0.13         |              |              |
| RC1019                          | 50       | 55       | 5        | 4.73         | 4.43         | 0.30         |              |              |
| RC1020                          | 46       | 50       | 4        | 6.17         | 5.49         | 0.67         | 0.28         |              |
| RC1021                          | 40       | 58       | 18       | 5.44         | 5.08         | 0.36         |              |              |
| RC1022                          | 32       | 36       | 4        | 3.11         | 2.88         | 0.23         | 0.08         |              |
| RC1022                          | 42       | 65       | 23       | 5.04         | 4.69         | 0.35         | 0.14         |              |
| RC1023                          | 26       | 50       | 24       | 3.90         | 3.57         | 0.33         | 0.16         |              |
| RC1023                          | 56       | 70       | 14       | 4.48         | 4.09         | 0.39         | 0.21         | 0.28         |
| RC1024                          | 28       | 54       | 26       | 4.15         | 3.68         | 0.46         | 0.27         | 0.43         |
| RC1024                          | 60       | 72       | 12       | 3.44         | 3.15         | 0.29         |              | 0.22         |
| RC1025                          | 28       | 61       | 33       | 3.11         | 2.85         | 0.26         | 0.13         |              |
| RC1026                          | 38       | 45       | 7        | 7.15         | 6.56         | 0.59         |              | 0.41         |
| RC1027                          | 30       | 50       | 20       | 6.26         | 5.64         | 0.63         |              |              |
| RC1028                          | 28       | 70       | 42       | 5.31         | 4.96         | 0.35         |              |              |
| RC1029                          | 26       | 66       | 40       | 5.12         | 4.72         | 0.39         |              |              |
| RC1030<br>RC1031                | 24<br>44 | 60<br>82 | 36<br>38 | 4.59<br>3.36 | 4.21<br>3.02 | 0.38<br>0.34 | 0.21<br>0.20 | 0.50<br>0.63 |
| RC1031                          | 38       | 56       | 18       | 6.48         | 5.90         | 0.54         | 0.20         |              |
| RC1032<br>RC1033                | 34       | 55       | 21       | 7.86         | 7.30         | 0.56         | 0.30         |              |
| RC1033                          | 29       | 56<br>56 | 27       | 6.86         | 6.28         | 0.57         | 0.20         |              |
| RC1035                          | 40       | 52       | 12       | 4.89         | 4.25         | 0.64         |              |              |
| RC1036                          | 30       | 68       | 38       |              | 4.14         |              |              |              |
| RC1037                          | 30       | 55       | 25       | 4.09         | 3.85         | 0.25         |              |              |
| RC1038                          | 38       | 57       | 19       | 8.53         | 7.89         | 0.23         |              |              |
| RC1039                          | 26       | 38       | 12       | 3.90         | 3.41         | 0.49         |              |              |
| RC1040                          | 36       | 60       | 24       | 14.61        | 13.90        | 0.71         | 0.13         |              |
| RC1041                          | 29       | 36       | 7        | 5.72         | 5.33         | 0.39         |              |              |
| RC1042                          | 38       | 54       | 16       | 3.04         | 2.72         | 0.32         |              |              |
| RC1042                          | 70       | 94       | 24       | 3.04         | 2.56         | 0.48         |              |              |
| RC1066                          | 28       | 30       | 2        | 3.22         | 2.98         | 0.24         |              |              |
| RC1068                          | 26       | 30       | 4        | 3.59         | 3.36         | 0.23         |              | 0.45         |
| RC1070                          | 24       | 26       | 2        | 2.78         | 2.50         | 0.28         |              |              |

